Ocean acidification research and the new generation


Editor’s note: Shay King is a senior at Arlington High School. He wrote this essay after Times editors asked him to describe his ocean-acidification studies so far.

As a high-school student of the Ocean Research College Academy (ORCA) based out of Everett Community College’s Running Start Program, I have had a unique opportunity to research this ever-growing threat called ocean acidification (OA). Being that I have a younger perspective on this issue and the threats it poses, I have become increasingly concerned for the state of our oceans and what it means for my generation and the generations to follow.

This issue has only been on the general public’s radar since recent stories, like that of The Seattle Times, have made it known. In my opinion this is a sad reflection on our society and what we choose to place our values in. It is true that the public has been aware of the greenhouse gas phenomenon and its influence on our atmosphere and ozone, but there lacks a general concern or awareness for the condition of our oceans. After all, ocean acidification is the nasty twin of atmospheric climate change.

Ocean acidification is a direct result of carbon dioxide concentrations in the atmosphere, but what most people aren’t aware of is the rate at which these concentrations are increasing. The first research on OA didn’t begin until the late ‘50s and even that was too late considering the industrial revolution has been pumping out CO2 since the 18th century. What I found most interesting throughout my research is that as a global community we’ve reached a level of atmospheric CO2 concentrations that we never thought possible. According to the Washington Post, the atmospheric carbon dioxide concentrations have topped 400 parts per million, the highest level in human history and nearly double the concentrations pre-industrial revolution.

The numbers concerning the atmospheric CO2 levels are vital, however when it gets down to the influences on ocean biology, and consequently global biology, then the sense of urgency that comes with ocean acidification becomes all too real. In my research I reviewed and critiqued multiple studies on OA’s effects on marine creatures called “calcifiers,” which are anything that uses calcium carbonate to form shells or skeletal structures including but not limited to oysters, certain sea stars, corals, barnacles, and phytoplankton. Increased atmospheric CO2 concentrations cause a decrease in ocean pH levels (aka more acidic) and as a result we as humans are helping in the literal corrosion of these creatures.

This acidic environment also causes development stages of marine calcifiers to be critically damaged. As a result, they’re losing the fight to adapt to these quickly changing water conditions. This is terrifying news to shellfish farmers who depend on our oceans for a living, but it goes even farther than just the farmers. According to the Washington State Department of Fish and Wildlife, the annual economic value of the commercial fishing industry in the state is around $4 billion and worth about 60,000 local jobs.
Continue reading